

Investigation of Curling and Warping on US 34 near Greeley, CO

David Merritt George Chang, PhD Transtec Group

Eric Prieve CDOT

COLORADO Department of <u>Transportation</u>

Outline

Project Background

- Data Collection
- Data Analysis
- Summary of Results
- Recommendation

- Reconstruction of US 34 near Greeley, CO
 Existing pavement was full-depth asphalt
- 9" JPCP over 6-8" of reclaimed asphalt base
- 15' joint spacing (dowelled joints)
- Single pass paving (38' wide)
- WB Construction: July 2012
- EB Construction: September 2012

difference!

Initial concerns after construction of WB Lanes (July)

Contractor / CDOT Measurement Differences

Station		Contractor - Lane 1			CDOT Lane 1	Contractor - Lane 2			CDOT Lane 2
Start	End	LWP	RWP	MRI	HRI	LWP	RWP	MBI	HRI
554+99	549+71	62.8	59.3	61.0	89.4	61.3	63.4	62.3	103.2
549+71	544+43	61.5	54.1	57.8	77.1	59.3	54.9	57.1	96.3
544+43	539+15	55.3	43.6	49.5	74.5) in/m	3.1	87.0

Contractor Diurnal Measurement

Station		8:00 AM			1:00 PM			5:00 PM		
	[RWP	LWP	MRI	RWP	LWP	MRI	RWP	LWP	MRI
Start	End								<u> </u>	
554+99	549+71	109.5	99.2	104.4	80	> 3(0 in	/mi	1	74.9
549+71	544+43	98.4	95.8	97.1	60	liff	oroi	nce	.8	66.8
544+43	539+15	89.9	88.5	89.2	61					61.0
539+15	533+87	92.8	88.7	90.7	63.8	59.1	61.5	63.6	59.4	61.5

Questions to be answered:

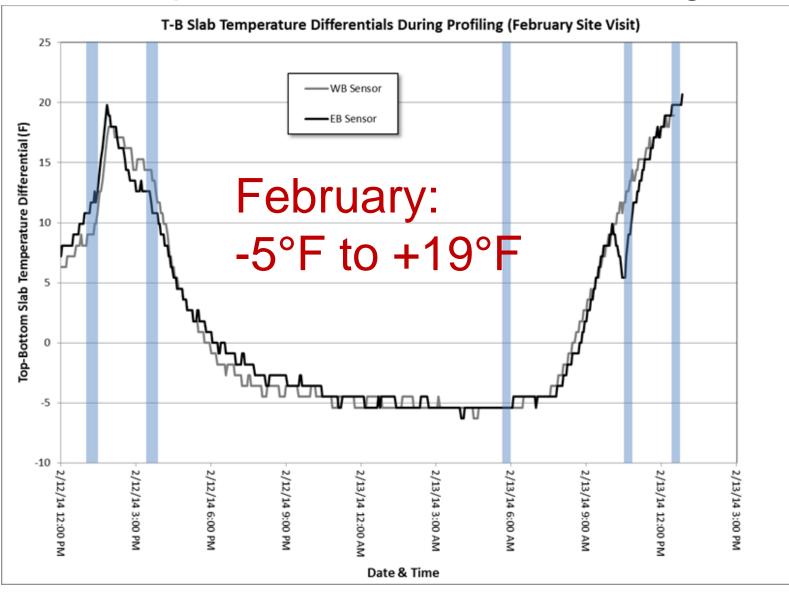
- What is the cause of significant differences in ride quality throughout the day?
- □ What is the cause of differences in ride quality between EB (Sept) and WB (July) lanes?
- Provide recommendations for mitigation on future projects.

Project Information Pavement design information Construction information (paving logs, equipment, etc.)

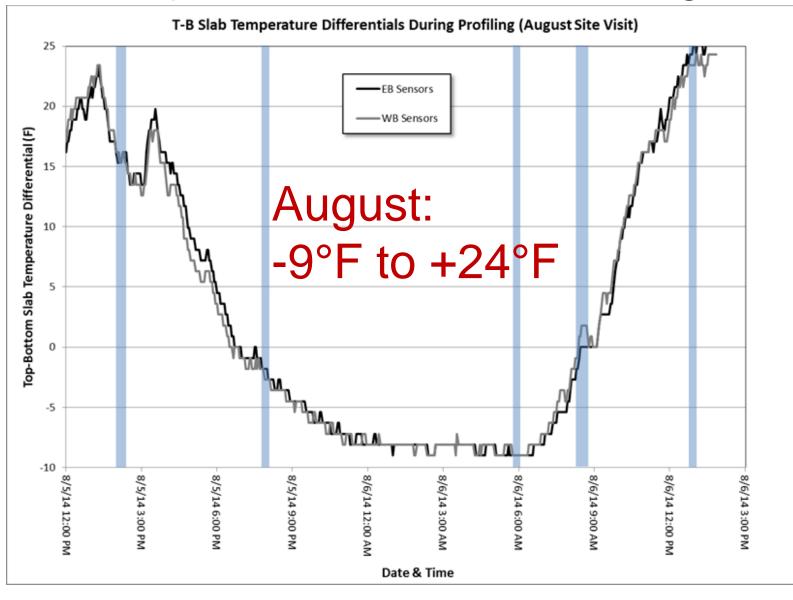
Date	Paving Day	Paving Window	Ambient High Temp (°F)	Ambient Low Temp (°F)				
WB Lanes								
7/20/2012	1	7:00-19:15	102.2	62.6				
7/23/2012	2	7:30-11:14	87.8	68				
7/24/2012	3	7:21-19:10	98.6	66.2				
7/25/2012	4	7:27-14:20	93.2	73.4				
7/26/2012	5	7:20-13:58	84.2	60.8				
EB Lanes								
9/13/2012	1	7:40-18:00	71.6	51.8				
9/14/2012	2	7:20-11:30	69.8	44.6				
9/17/2012	3	7:15-17:15	68	48.2				
8/18/2012	4	7:15-18:00	80.6	42.8				
9/19/2012	5	8:30-17:12	82.4	50				

Additional Profile Data CDOT High Speed Inertial Profiler Summer and Winter conditions: February & August 2014)

- \Box 4 Times of the day:
 - Early AM (maximum (-) slab temperature gradient)
 - Mid-AM (near-zero slab temperature gradient)
 - Early PM (maximum (+) slab temperature gradient)
 - Late PM (near-zero slab temperature gradient)


Temperature Data

Logging sensors embedded in top, middle, bottom of slab.

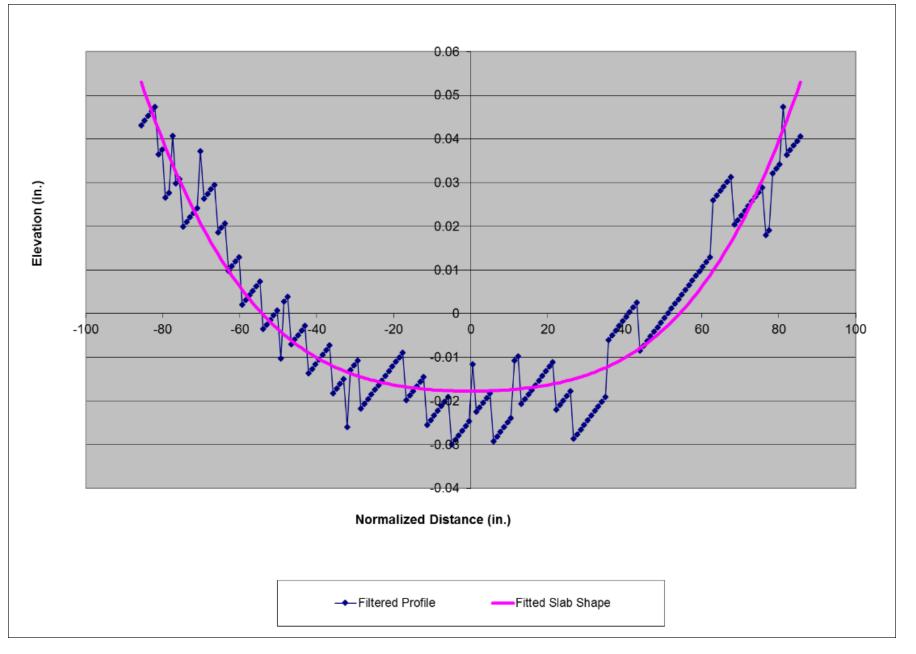

□ Temperatures recorded during profiling.

Temperature Differentials During Profiling:

Temperature Differentials During Profiling:

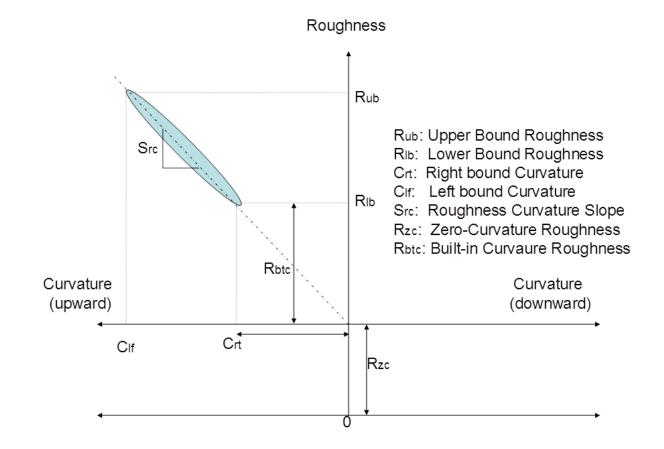
Data Analyses

Ride Quality Analysis \Box By Lane □ By Wheelpath □ By Side of Bridge \Box By Paving Day HIPERPAV Analysis □ Predict slab temperature differentials at set time.

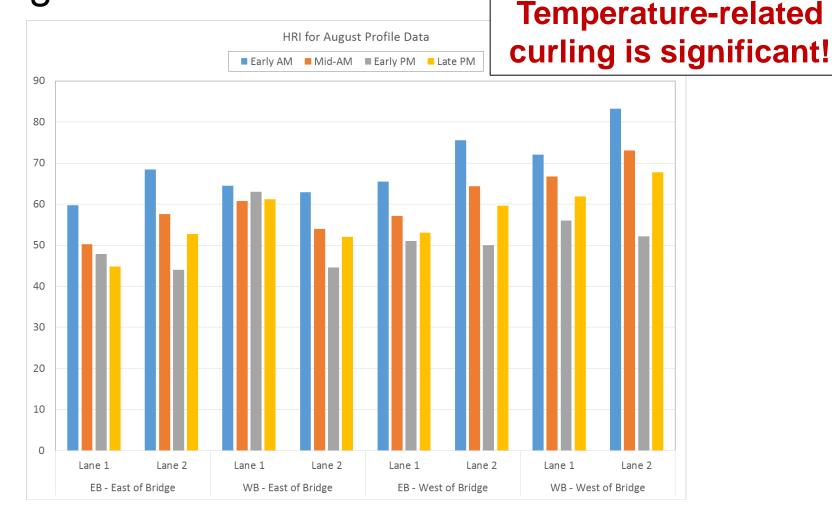

□ Evaluate alternate scenarios.

Analyses

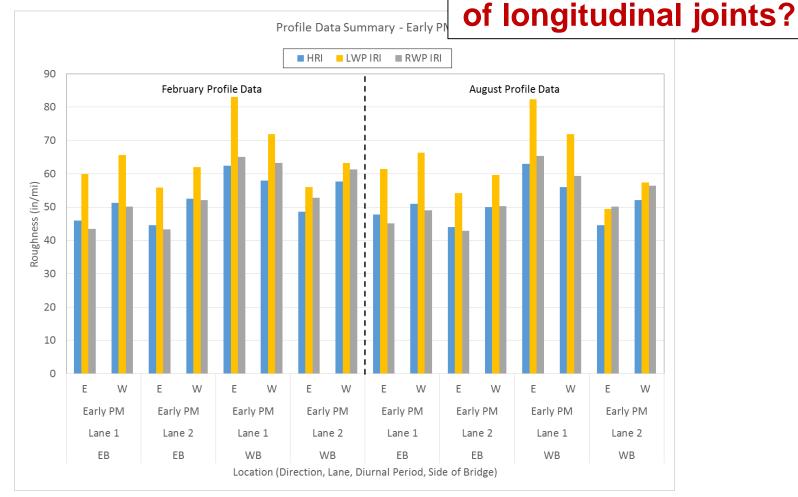
Slab Curvature Analysis


- Curve-fitting of slab shape based on profile data.
- Computation of Second Generation Curvature Index (2GCI).
- □ Over **21,000** slabs profiles analyzed!

Analyses



Analyses


Slab Curvature Analysis Slab curvature (2GCI) vs. roughness

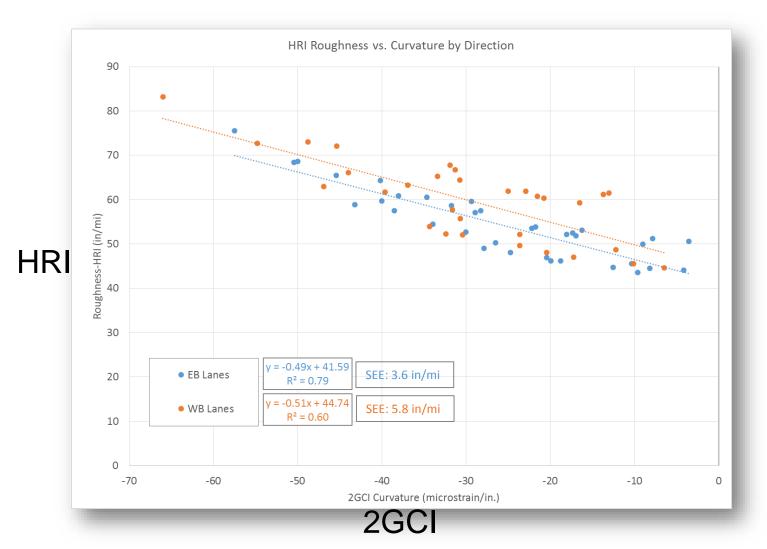
Summary of Results: Ride Quality Diurnal difference in HRI, max: 31 in/mi, avg: 14.1 in/mi

Summary of Results: Ride Quality Wheelpath difference in IRI, max. 18 in/mi avg: 7.7 in/mi Related to formation

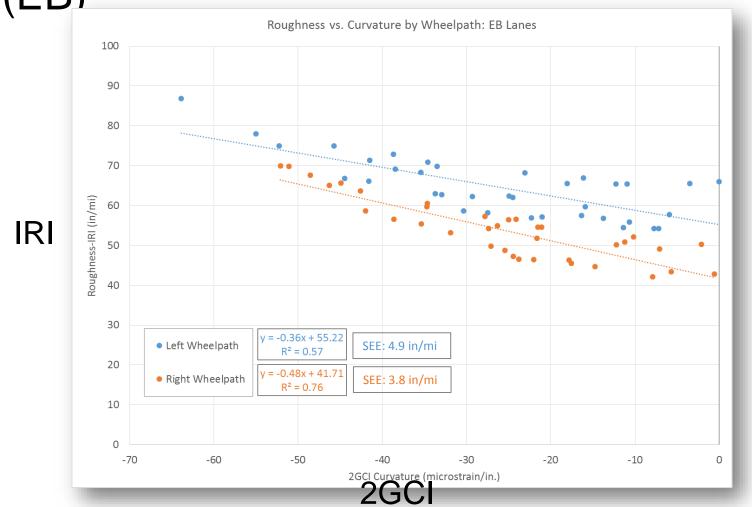
Summary of Results: Ride Quality

No clear correlation

between paving


Ride quality by paving day

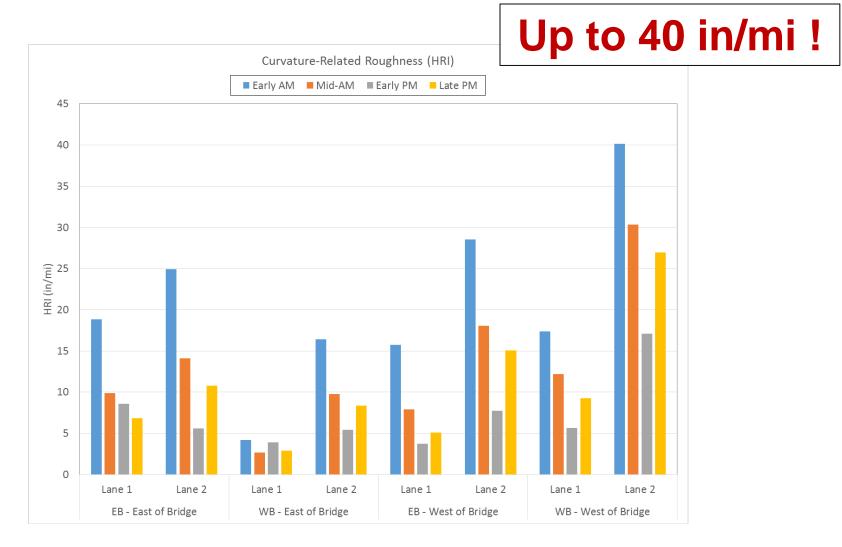
conditions and HRI by Paving Day (August Profile Data - Early AM) roughness. Day 1 Day 2 Day 3 Day 4 Day 5 120 100 80 HRI (in/mi) 60 40 20 0 EB Lane 1 EB Lane 2 WB Lane 1 WB Lane 2


Summary of Results: Slab Curvature

- Most curled up slabs (negative 2GCI).
- No substantial difference between EB and WB lanes.


Summary of Results: Slab Curvature Roughness vs. Curvature by Direction

Summary of Results: Slab Curvature Roughness vs. Curvature by Wheelpath (EB)


Summary of Results: Slab Curvature Roughness vs. Curvature by Wheelpath (WB)

Summary of Results: Slab Curvature

- Estimate Zero-Curvature Roughness.
 - □ EB Lanes (HRI): 41.6 in/mi
 - □ WB Lanes (HRI): 44.7 in/mi
- Separation of curvature vs. non-curvature related roughness

Summary of Results: Slab Curvature Curvature-related Roughness (HRI)

Summary of Results: Slab Curvature Non-curvature Roughness (HRI)

Summary of Results: HIPERPAV

- Predicted top-bottom slab temperature differentials at final set
 - □ EB Lanes: +2.8F
 - □WB Lanes: +15.9F
 - □ Both result in a negative "built-in" temperature gradient and upward slab curvature.
- Alternate scenarios

 Night paving (7 PM vs. 7 AM start) and cooler base temperature both resulted in smaller (negative) temperature differential.

Conclusions

- Difference between EB and WB lanes was not as significant as initially thought.
- Temperature curling is significantly impacting ride quality.
- How to we account for this in ride quality acceptance?

Recommendations: Construction Practices

Hot weather paving:

Minimize top-bottom slab temperature differential

- Night paving or upper limit on ambient temperature for paving.
- Upper limit on base temperature, cool it with lime slurry, curing compound, etc.
- □ Consider improved curing practices
 - Double coat in hot weather
 - Poly-Alpha Methylstyrent (PAMS) curing compound

- Collect profile data at two times during the same day
 - □ Early AM and Early PM
 - Exception if weather conditions change (e.g., becomes overcast).

- 1. Set acceptance thresholds based on two parameters:
 - 1. Average HRI for the two sets of profile data.
 - Threshold slightly higher than current threshold
 - 2. Maximum absolute difference in HRI between the two sets of profile data.
 - Tentatively, 15-20 in/mi maximum

- Localized Roughness:
 - □ Continue use of Short Baselength (25 ft) Continuous IRI.
 - Look for ALRs that appear in both sets of profile data.
 - □ Require synchronization of profile data.

Recommendations: Smoothness Acceptance Validation using US 34 Data HRI limit = 67 in/mi (current CDOT full pay limit). Maximum absolute difference = 15 in/mi.

		Number of 0.1-mile Segments	Percent Passing Average HRI Criteria	Percent Passing Absolute Difference Criteria
February Pr	ofile Data			
EB	Lane 1	14	100	93
	Lane 2	14	100	43
WB	Lane 1	13	69	100
	Lane 2	13	69	62
August Pro	file Data			
EB	Lane 1	13	100	54
	Lane 2	13	92	8
WB	Lane 1	12	67	58
VV D	Lane 2	12	58	0

- Validation using US 34 Data
 - □ No segments passed both criteria.
 - □ After grinding (early AM profile) all segments pass both criteria.
- Pilot project/shadow specification implementation will help dial in appropriate thresholds for these criteria.

